Existence of a Sign-Changing Weak Solution to Doubly Nonlinear Parabolic Equations
نویسندگان
چکیده
Abstract In this paper, assuming the initial-boundary datum belonging to suitable Sobolev and Lebesgue spaces, we prove global existence result for a (possibly sign changing) weak solution Cauchy–Dirichlet problem doubly nonlinear parabolic equations of form $$\begin{aligned} \partial _t\left( |u|^{q-1}u\right) -\Delta _p u=0\quad \text {in}\,\,\,\Omega _\infty , \end{aligned}$$ ∂ t | u q - 1 Δ p = 0 in Ω ∞ , where $$p>1$$ > $$q>0$$ . This is fair improvement preceding by authors (Nonlinear Anal 175C :157–172, 2018). The key tools employ are energy estimates approximate Rothe type integral strong convergence gradients solutions.
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولA pseudo - monotonicity adapted to doubly nonlinear elliptic - parabolic equations
Pseudo-monotonicity seems to be a good notion to deal with convergence in non-linear terms of partial differential equations. J.-L. Lions [16] used two different definitions of pseudo-monotonicity for elliptic and parabolic problems, and derived associated existence results. Nonlinear elliptic-parabolic equations are intermediate equations for which an intermediate pseudo-monotonicity is define...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملExistence and Uniqueness for Doubly Nonlinear Parabolic Equations with Nonstandard Growth Conditions
We study the homogeneous Dirichlet problem for the equation ut = n ∑ i=1 Di ( ai|Di(|u|m(x)−1u)|pi(x,t)−2Di(|u|m(x)−1u) ) +b|u|σ(x,t)−2u with given exponents m(x) , pi(x,t) and σ(x,t) . It is proved that the problem has a solution in a suitable variable exponent Sobolev space. In dependence on the properties of the coefficient b and the exponents of nonlinearity, the solution exists globally or...
متن کاملExistence of weak solutions for general nonlocal and nonlinear second-order parabolic equations
In this article, we provide existence results for a general class of nonlocal and nonlinear second-order parabolic equations. The main motivation comes from front propagation theory in the cases when the normal velocity depends on the moving front in a nonlocal way. Among applications, we present level-set equations appearing in dislocations’ theory and in the study of Fitzhugh-Nagumo systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2022
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-022-01087-8